1. Title
Hypoplastic left heart syndrome (HLHS)

N.A. Haas, Bad Oeynhausen
Ch. Jux, Giessen
J. Photiadis, Berlin
H.-H. Kramer, Kiel
Typical forms:
Mitral atresia/Aortic atresia (MA/AoA)
Mitral stenosis/Aortic stenosis (MS/AoA)
Mitral stenosis/Aortic stenosis (plus VSD) (MS/AoS)
Additional forms:

- Double outlet right ventricle (DORV) with small LV
- Imbalanced AVSD with small LV
- ccTGA with large VSD and small LV
- Long tubular SubAoS, AS and hypoplastic arch with VSD
- etc.

-> hypoplastic left heart complex
 - hypoplastic Arch, smallisch LV, dominant RV
 -> univentricular palliation, RV systemic ventricle
Epidemiology: 1-2% of all cardiac defects
2/3 male
major cause for heart failure in neonates
major cause for neonatal death

Pathogenesis: hypoplasia of LV inflow and outflow
secondary ventricular maldevelopment

Associated defects: VSD
anomalous pulmonary vein connections
myocardial sinusoids/fistula
abnormal coronary arteries
tricuspid valve abnormalities
abnormalities of the systemic veins
Extracardiac abnormalities:
- between 5 and 18 %
- GI tract (esophageal atresia, duodenal atresia, intestinal malrotation, diaphragmatic hernia)
- CNS (holoprosencephalopathy, agenesia of corpus callosum, microcephalus → neurolog. impairment ?

Genetic syndromes:
Postnatal decompensation (if untreated)

- constriction of the PDA
- impairment of systemic perfusion
- impairment of cerebral perfusion
- impairment of cardiac perfusion

- decrease of PVR
- preferential flow to the lungs
- increase of QP/QS
- decrease of systemic perfusion
- decrease of systemic CO

- compensation
- increase of sympathetic activity
- increase of SVR
- tricuspid insufficiency

- result
- severe acidosis
- shock -> organ failure -> death
Diagnostics

- Prenatal: - basics for adequate postnatal care
- delivery in a center with affiliated cardiac center experienced in HLHS

- postnatal: - complete diagnosis,
- ? Secondary organ impairment ?
- ? Additional problems ?
- ? Genetic disorders ?

- stabilization - transfer to a center experienced in HLHS
Diagnostics

- blood pressure
- pulse oxymetry
- ECG
- Chest-X-ray
- ECHO
- catheter
- MRI/CT
- pathology
Primary diagnostics in HLHS

- Blood pressure - all 4 extremities/limbs
- Pulse oxymetry - all 4 extremities/limbs
- ECG - not diagnostic - baseline
- Chest-X-rax - not diagnostic – baseline pre-op
- Catheter - if pulmonary veins unclear for BAS or hybrid therapy
- MRT, CT - not necessary
- Pathology - acidosis, organ failure
 - infection, coagulation
Primary diagnostics in HLHS

ECHO:
- diagnostic - anatomy and function

- LV: size and function
- Aorta: perfusion, size
- arch: anatomy, A.lusoria?
- ASD: large enough?
- PDA: stenosis, perfusion
- RV: function, TR?
- veins: pulmonary anatomy, stenoses?
- systemic anatomy
Therapeutic options in HLHS

After stabilization of the newborn:

- „Compassionate care“
- Norwood-operation
- Hybrid-therapy
- cardiac transplantation
Treatment of the stable newborn with HLHS

- Prostaglandin E-Infusion - start with 10 – 20 ng/kg/min
 - decrease to 5-10 ng/kg/min if possible
 - check ECHO, caveat: apnoea

- Treat acidosis aggressively - regular check of BGA

- Spontaneous ventilation - extubate if possible
 - avoid intubation
 - FiO₂ 0,21, avoid additional oxygen
 - accept SatO₂ of 75-80%

- Afterload reduction - Na-nitroprusside, phentolamine
 - aim for low normal blood pressure

- Optimize hemoglobin - transfusion if necessary (Hb 14)
Treatment of the newborn with HLHS in shock

- Prostaglandin E-Infusion
 - start with 20 ng/kg/min
 - increase if PDA restriction
 - check ECHO

- Treat acidosis aggressively
 - regular check of BGA
 - aim for paCO$_2$ of 40-45
 - if Sats are high - paCO$_2$ of 50
 - aim for paO$_2$ of 40 (SatO$_2$ of 75-80%)

- ventilation
- optimize blood pressure
 - volume bolus

- optimize cardiac function
 - milrinone, rarely catecholamines
 - careful

- Afterload reduction
- optimize hemoglobin
 - transfusion if necessary (Hb 14)
Surgical treatment options

Principle:
- at the end of the first week of life
- stenosis free flow to the heart
 - pulmonary veins, atrial septum
- stenosis free flow to the body
 - aortic arch
- adequate arch and coronary perfusion
- balanced pulmonary perfusion

2 surgical options

- classical Norwood operation
- Norwood-Sano operation
Leitlinien

Hypoplastisches Linksherzsyndrom
Surgical treatment options

Norwood operation: atrioseptectomy, arch augmentation modified Blalock-Taussig shunt

Norwood-Sano-operation: atrioseptectomy, arch augmentation 5-6 mm Goretex conduit RV-> PA no diastolic run-off RV-scar, PA-scars

Results: 30 day mortality about 20%
2. step: Glenn (superior) cavopulmonary anastomosis

Age 4-6 months, if necessary tricuspid valve repair
3. step: total cavopulmonary anastomosis

Age 2-3 years, extra- intracardiac tunnel, fenestration?
Hybrid therapy – palliation of HLHS

- Treatment option
 - alternative
 - in complications (NEC, etc.)

- Technique:
 - bilateral banding
 - PDA stenting – systemic perfusion
 - ASD (BAS or Stent)

- Step II
 - „comprehensive stage II“
 - Norwood I and II
Leitlinien
Hypoplastisches Linksherzsyndrom
Hybrid therapy – palliation of HLHS

- advantage
 - no cardiopulmonary bypass
 - no SIRS etc. in newborn age
 - usable in complications (NEC, etc.)
 - bridge to transplant
 - borderline LV \rightarrow growth?
 \rightarrow biventricular?

- disadvantage
 - bilateral banding – scars at PA
 - coarctation – brain perfusion?
 - high rate of reinterventions

- results
 - no benefit regarding morbidity/mortality
 - no benefit regarding neurologic outcome
Cardiac transplantation in HLHS

- no veritable treatment option in newborns

- shortage of donor organs

- in failing hearts at any stage of palliation possible

- mortality comparable to Norwood- operation
Compassionate care in HLHS

- has to be addressed in patient consultation

- is veritable treatment option in newborns
 - high late morbidity and mortality
 - impaired life expectancy
 - neurologic long term follow-up
Follow-up after HLHS palliation

f/u after stage I:
- close follow-up
- ECHO: coarctation, heart failure
 ASD, TR
- saturation: 75-80%
 shunt stenosis, QP/QS

f/u after hybrid stage I:
- flow PA bands, flow PDA -> aorta
- coarctation, retrograde flow, ASD ?

Medication:
- ASS

Nutrition:
- often feeding problems
Follow-up after HLHS palliation

Interstage mortality: - up to 15%
 - reason unclear
 - close follow-up

Home monitoring programs:
 - daily weight, saturations
 - weekly telephone calls
 - high alert to infections
 - early hospital admission
 - close contact to pediatricians
Late follow-up after HLHS palliation

somatic
- impaired exercise capacity
- reduced life expectancy
- RV systemic ventricle, TR

social
- no normal professional development
- insurance ?

neurology
- very high rate of neurologic impairment
- decreased mean IQ
- early supportive measures necessary
- modern surgical techniques ?

transplant
- immunosuppression
- transplantation service
Prevention of HLHS

- Not possible
- Fetal ECHO should be used - decision making
- optimal postnatal care
- Discrete increased familiar risk - genetic counselling
- Intrauterine treatment - not successful/high risk